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A great part of the interest in complex networks has been motivated by the presence of structured, frequently
nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics,
and also because they provide the means to identify and classify several types of complex network, it becomes
important to obtain meaningful measurements of the local network topology. In addition to traditional features
such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature
in order to provide complementary descriptions of the network connectivity. The current work proposes a
different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These
chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities
�e.g., open or connected�. A theoretical analysis of the density of such motifs in random and scale-free
networks is described, and an algorithm for identifying these motifs in general networks is presented. The
potential of considering chains for network characterization has been illustrated with respect to five categories
of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that
several chains were observed in real-world networks, especially the world wide web, books, and the power
grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
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I. INTRODUCTION

A large number of interesting dynamic systems can be
studied and modeled by first representing them as networks
and then considering specific dynamic models. Because the
latter depend greatly on the connectivity of the network, it
becomes critical to obtain good characterizations of the cor-
responding connectivity structure. This characterization is
even more important in cases when the dynamics is not con-
sidered, e.g., while analyzing a frozen instant of systems
such as the internet and protein-protein interaction networks.
Therefore, it is hardly surprising that a great deal of effort
�e.g., �1�� has been invested in developing new measure-
ments capable of providing meaningful and comprehensive
characterization of the connectivity structure of complex
networks.

Traditional measurements of the topology of complex net-
works include the classical vertex degree and the clustering
coefficient �e.g., �2��. Both these features are defined for each
vertex in the network and express the connectivity only at
the immediate neighborhood of that reference vertex. Other
measurements such as the minimum shortest path and be-
tweenness centrality reflect the connectivity of broader por-
tions of the network. Hierarchical measurements �e.g., �3–6��
such as the hierarchical vertex degree and hierarchical clus-
tering coefficient, also applicable to individual reference ver-
tices, have been proposed in order to reflect the connectivity
properties along successive hierarchical neighborhoods
around the reference vertex. Another interesting family of
measurements of the topological properties of complex net-
works involves the quantification of the frequency of basic
motifs in the network �e.g., �7–10��. Motifs are subgraphs
corresponding to the simplest structural elements found in
networks, in the sense of involving small numbers of vertices
and edges. Examples of motifs include feedforward loops,
cycles of order 3, and bifans.

Preliminary studies of chains of nodes in networks have
been made. Costa �11� studied the effect of chains in affect-
ing the fractal dimension as revealed by dilations along net-
works. Kaiser and Hilgetag �12� studied the vulnerability of
networks involving linear chains with an open extremity. In
another work �13�, they addressed the presence of this same
type of motif in a sparse model of a spatial network. More
recently, Levnajić and Tadić �14� investigated the dynamics
in simple networks including linear chains of nodes.

Although several measurements are now available in the
literature, their application will always be strongly related to
each specific problem. In other words, there is no definitive
or complete set of measurements for the characterization of
the topology of complex networks. For instance, in case one
is interested in the community structures, measurements such
as the modularity are more likely to provide valuable and
meaningful information �15�. In this sense, specific new
problems will likely continue to motivate novel, especially
suited, measurements. The reader is referred to the survey �1�
for a more extensive discussion of measurement choices and
applications.

The current work proposes a complementary way to char-
acterize the connectivity of complex networks in terms of a
special class of motifs defined by chains of vertices, which
are motifs composed by vertices connected in a sequential
way, where the internal vertices have degree 2. These motifs
include cords, tails, rings, and handles. While tails and
handles have at least one extremity connected to the remain-
der of the network, cords and rings are disconnected, being
composed of groups of vertices connected in a sequential
way. Additional motifs such as two or more handles con-
nected to the remainder of the network, namely, n-handles
with n�2, can also be defined, but they are not considered in
this work.

Figure 1 illustrates six types of chain, namely, �a� a cord,
�b� a tail, �c� a two-tail, �d� a ring, �e� a handle, and �f� an
n-handle. The main difference between the traditional motifs
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and those defined and characterized in this paper is that the
latter may involve a large number of vertices and edges.

The main motivation behind the introduction of the con-
cept of chains in complex networks provided in this paper is
that such a structure is odd in the sense that it can be con-
ceptualized as an edge containing a series of intermediate
vertices which make no branches. In several aspects, such as
flow, the incorporation of such intermediate vertices along an
edge will imply virtually no change in the overall dynamics
of that substructure of the network. In other words, the same
flow capacity will be offered by either the isolated edge or its
version incorporating a series of intermediate vertices. Inter-
estingly, vertices with only two neighbors—henceforth
called articulations—seem to have a rather distinct nature
and role in complex networks, which suggests that they may
have distinct origins. For instance, as explored further in this
work, articulations seem to appear in networks generated by
sequential processes �e.g., word adjacency in books�, but can
also be a consequence of incompleteness of the building pro-
cess of networks. The latter possibility is experimentally in-
vestigated in this work by considering incompletely sampled
versions of network models.

In addition to introducing the concept and a theory of
chains and articulations in complex networks and presenting
means for their identification, the present work also illus-
trates the potential of considering the statistics of cords, tails,
and handles for characterizing real-world networks �social,
information, technological, word adjacency in books, and
biological networks�. This paper starts by presenting the
definition of chains and their categories �i.e., cords, tails, and
handles�, and proceeds by developing an analytical investi-
gation of the density of chains in random and scale-free
models. Next, an algorithm for the identification of such mo-
tifs is described, following by a discussion of the chain sta-
tistics obtained. The application of such a methodology con-
siders the characterization of real-world complex networks in
terms of chain motifs.

II. CHAINS, CORDS, TAILS, HANDLES, AND RINGS

Given a network with N vertices, consider a sequence
�n1 ,n2 , . . . ,nm+1� of m+1 vertices ni. If the sequence has the

following properties: �1� There is an edge between vertices ni
and ni+1, 1� i�m; �2� vertices n1 and nm+1 have degree not
equal to 2; and �3� intermediate vertices ni, 2� i�m, if any,
have degree 2; we call the sequence a chain of length m.
Vertices n1 and nm+1 are called the extremities of the chain.

Chains can be classified in four categories �kni
is the de-

gree of vertex ni�: Cords are chains with kn1
=1 and knm+1

=1; handles are chains with kn1
�2 and knm+1

�2; tails are
chains with kn1

=1 and knm+1
�2 �or equivalently kn1

�2 and
knm+1

=1�; rings �of length m� are sequences �n1 ,n2 , . . . ,nm�
of m vertices where the degree of each vertex is kni

=2, 1
�n�m, ni is adjacent to ni+1 �for 1� i�m−1�, and nm is
adjacent to n1. Rings are a special case of chains in which
there are no extremities, and the category was included in the
chain classification only for completeness.

Including the trivial cases with m=1, it is easy to see that
each vertex of degree 1 is at an extremity of a cord or a tail
and each vertex of degree greater than 2 is at an extremity of
a tail or a handle. Note that the definition of handles includes
the degenerate case where the extremities are the same ver-
tex: n1=nm+1.

With these definitions and writing NC, NH, NT, and NR for
the total number of cords, handles, tails, and rings, respec-
tively, and N�k� for the number of vertices of degree k, we
have

N�1� = 2NC + NT, �1�

�
k�2

kN�k� = 2NH + NT. �2�

To evaluate the number of vertices of degree 2, we introduce
the notation NC�m� for the number of cords of length m, and
similarly NH�m� for handles, NT�m� for tails, and NR�m� for
rings. Each chain of length m has m−1 and each ring of
length m has m vertices of degree 2, giving

N�2� = �
m=1

�

�mNR�m� + �m − 1��NC�m� + NH�m� + NT�m��� .

�3�

Isolated vertices �vertices with degree 0� have no effect on
such structures, and it is considered hereafter that the net-
work has no isolated nodes.

FIG. 2. The chain can be �a� undirected, �b� directed, or �c�
mixed. Mixed chains have arcs in any direction. Note that �c� and
�d� are equivalent.

FIG. 1. Chains can be classified into different types, depending
on the connections among their external vertices. Here are shown
six types of chains �dark gray vertices�: �a� a cord, �b� a tail, �c� a
two-tail, �d� a ring, �e� a handle, and �f� an n—handle.
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The chains can also be classified according to the nature
of their connections as in Fig. 2. In undirected networks, the
chains are undirected �Fig. 2�. In directed networks, on the
other hand, the chains can be classified into three types.

�1� Directed chains are those whose arcs of inner vertices
follow just one direction, i.e., there is a directed path from
one extremity to the other �Fig. 2�b��.

�2� Undirected chains are defined as for undirected net-
works, which have undirected arcs between inner vertices
�Fig. 2�a��. An undirected arc between vertices i and j exists
if there is an arc from i to j and another from j to i.

�3� Mixed chains are those with any other combination of
arc directions as in Fig. 2�c�.

In our analysis we consider just undirect networks, but the
extension for direct networks is straightforward.

III. ALGORITHM FOR CHAIN IDENTIFICATION

The algorithm to identify chains of vertices includes two
steps, one for finding chains of size greater than 1 and the
other for finding chains of unit size. The first step is illus-
trated in Fig. 3 and described as follows.

�1� Input: graph G.
�2� Output: list containing all chains of size greater than 2.
�3� Calculate the degree of vertices in G and store them in

a list K.
�4� Find vertices i such that ki=2, ki�K, and store them

in a list Q2.
�5� While Q2 is not empty,

�a� remove a vertex �A� from Q2 and then insert its
first neighboring vertex �B�, A, and its second neighboring
vertex �C� in a queue P �in this order�.

�b� While the first and last elements of P have degree
equal to 2 or are not the same do the following.

�i� Let D be the neighboring node of the first ele-
ment in P. In case D is not already in P, include it into that
queue in the first position.

�ii� If D is in Q2, remove it.
�iii� Let E be the neighboring node of the last el-

ement in P. In case E is not already in P, include it into that
queue in the last position.

�iv� If E is in Q2, remove it.
�c� Insert P in a list L and clear P.

The list L contains all chains of size greater than 2. They
can now be classified into cords, tails, and handles according
to the degree of the first and last elements of the correspond-
ing queue.

The second step, required for identifying the chains of
unit length, is as follows.

�1� Input: graph G, list K, and list L.
�2� Output: list of cords, tails, and handles of unit size.
�3� Find all vertices of degree equal to 1 which were not

in L and store them in a list Q1.
�4� While Q1 is not empty,

�a� remove a vertex from Q1 and insert it in a queue
P;

�b� if the neighboring node of A has degree also
equal to 1, remove it from Q1, insert it in P, and insert P in
a list C1;

�c� else insert its neighbor in P and insert P in a list
T1.

�5� include all pairs of connected vertices that are not in L,
C1, or T1 in a list H1.

The lists C1, T1, and H1 contain, respectively, all cords,
tails, and handles of unit size in the network.

IV. STATISTICS

Consider an ensemble of networks completely determined
by the degree-degree correlations P�k ,k��.1 Given P�k ,k��
and the number of vertices in the network, we want to evalu-
ate the number of each chain type and the rings. The degree
distribution P�k� and the conditional neighbor degree distri-
bution P�k� �k�, i.e., the probability that a neighbor of a ver-
tex with degree k has degree k�, are easily computed:

P�k� =

�
k�

P�k,k��/k

�
k�,k�

P�k�,k��/k�
, �4�

P�k��k� =
	k
P�k,k��

kP�k�
, �5�

where 	k
=�kkP�k� is the average degree of the network.

A. Rings

For a ring of length m, we start at a vertex of degree 2, go
through m−1 vertices of degree 2, and come back to the
original vertex. Each transition from a vertex of degree 2 to
another, with the exception of the last one that closes the
ring, has probability P�2 �2�; the closing of the ring requires
reaching one of the vertices of degree 2 �probability P�2 �2��
and, among them, exactly the first one �probability

1For such an ensemble to be possible, connections from a vertex
to itself �self-connections� and multiple connections between two
vertices must be allowed, in contrast to many network models. Such
self- and multiple connections will be rare provided the network is
sufficiently large.

FIG. 3. The main steps to identify handles of size greater than 2
in networks are the following. �i� Choose a vertex of degree 2 and
add it to a list �dark gray vertex�; �ii� go to its neighbors and also
add them if they have degree 2; �iii� go to the next neighbors,
excluding the vertices already added to the list, and also add them if
they have degree 2; �iv� stop adding vertices to the list after finding
two vertices of degree greater than 2. In this case, the size of the
obtained handle is 6. The same procedure can also be applied to find
cords and tails, but at least one extremity should have degree equal
to 1.
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1 / �NP�2���. If we start from all vertices of degree 2, each
ring will be counted m times, resulting in

NR�m� =
1

m
P�2�2�m. �6�

This expression is valid only for the case of small m and
large N, such that the vertices already included in the ring do
not significantly affect the conditional probabilities. Such an
approximation is used throughout this work. Note that, under
these circumstances, when computing Eq. �3�, NR�m� is of
the order of the approximation error in the expressions of
NC�m�, NT�m�, and NH�m�.

B. Cords

Starting from a vertex of degree 1, a cord is traversed by
following through a set of vertices of degree 2 until a vertex
of degree 1 that ends the cord is reached. A cord of length 1
has no intermediate vertices; starting in a vertex of degree 1,
the probability of finding a cord of length 1 is therefore given
by P�1 �1�. For a cord of length 2, the edge from the initial
vertex should go through a vertex of degree 2 before arriving
at a new vertex of degree 1, giving P�2 �1�P�1 �2�. For
lengths greater than 2, each new intermediate vertex is
reached with probability P�2 �2�, and therefore we have
P�2 �1�P�2 �2�m−2P�1 �2� for a cord of length m. Considering
that there are NP�1� vertices of degree 1 in the network, but
only half of them must be taken as the starting vertex to find
a cord, we arrive at

NC�m� = �
1

2
NP�1�P�1�1� if m = 1,

1

2
NP�1�P�2�1�P�2�2�m−2P�1�2� if m � 1.�

�7�

C. Tails

The number of tails can be computed similarly. We need
to either start at a vertex with degree 1 and reach a vertex of
degree greater than 2 or vice versa; only one of these possi-
bilities must be considered. We arrive at

NT�m� = NP�1�P��2�1� if m = 1,

NP�1�P�2�1�P�2�2�m−2P��2�2� if m � 1,
�

�8�

where the notation P��2 �k�=�k��2P�k� �k� is used.

D. Handles

A handle starts in a vertex of degree k�2 and ends in a
vertex of degree k��2. Starting from one of the NP�k� ver-
tices of degree k�2 of the network, there are k possibilities
to follow a chain, each characterized by a sequence of verti-
ces of degree 2 until reaching a vertex of degree k��2. This
gives a total of NkP�k�P��2 �k� handles of length 1 and
NkP�k�P�2 �k�P�2 �2�m−2P��2 �2� handles of length m�1.
Summing up for all values of k�2, using �kkP�k�P�k� �k�
=k�P�k��, which can be deduced from relations �4� and �5�,
and considering that each handle is counted twice when start-
ing from all nodes of degree greater than 2, we have

NH�m� = �
1

2
N�	k
 − P�1��2 − P�1�1� − P�2�1�� − P�2��4 − P�1�2� − P�2�2��� if m = 1,

1

2
N�2P�2� − P�1�P�2�1� − 2P�2�P�2�2��P�2�2�m−2P��2�2� if m � 1.� �9�

Using Eqs. �7�–�9� we have

�
m=1

�

��m − 1��NC�m� + NH�m� + NT�m��� = N�2� .

Comparing this result2 with Eq. �3� we see that the rings are
already counted in the number of chains, as hinted at the end
of Sec. IV A. This happens because, while computing the
probability of chains, we ignore the fact that the presence of
rings decreases the number of possible chains. For a large

enough network, the number of rings should be small com-
pared with the number of the other structures, validating the
approximation.

Note that all expressions are proportional to P�2 �2�m, and
therefore large chains should be exponentially rare, if they
are not favored by the network growth.

V. THEORETICAL ANALYSIS FOR UNCORRELATED
NETWORKS

For uncorrelated networks, where the degree at one side
of an edge is independent of the degree at the other side of
the edge, P�k ,k�� can be factored as

2In these expressions and the following, we assume that the net-
work is sufficiently large, such that the inclusion of some vertices in
the chain does not affect the probabilities of reaching new vertices
in the next step.
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P�k,k�� =
kP�k�k�P�k��

	k
2 . �10�

The conditional probability is simplified to

P�k��k� =
k�P�k��

	k

. �11�

Using this last expression, we have for uncorrelated net-
works

NR�m� =
1

m
�2P�2�

	k

�m

, �12�

NC�m� =
2m−2NP�1�2P�2�m−1

	k
m , �13�

NT�m� = NP�1��2P�2�
	k


�m−1

� , �14�

NH�m� =
N	k


2
�2P�2�

	k

�m−1

�2. �15�

where �= �1− P�1� / 	k
−2P�2� / 	k
�.

A. Erdős-Rényi networks

Erdős-Rényi networks have no degree correlations and a
Poissonian degree distribution:

P�k� =
e−	k
	k
k

k!
. �16�

This gives the following expressions for the number of rings,
cords, tails, and handles:

NR�m� =
	k
me−m	k


m
, �17�

NC�m� =
N

2
	k
me−�m+1�	k
, �18�

NT�m� = N	k
me−�m+1�	k
� , �19�

NH�m� =
N

2
	k
me−�m+1�	k
�2, �20�

where �= �e	k
− 	k
−1�. Figure 4 shows a comparison of the
results for networks with N=106 vertices and L=972 941
edges �this number of edges was chosen to give the same
average degree as for the scale-free network discussed be-
low�. A total of 1000 realizations of the model were used to
compute the averages and standard deviations.

B. Scale-free networks

We now proceed to uncorrelated scale-free networks with
degree distribution given as

P�k� =
k−�

����
, �21�

where � is the power law coefficient and ��x� is the Riemann
zeta function. This distribution describes a strictly scale-free
network, with the power law valid for all values of k and a
minimum kmin=1. The results are therefore not directly ap-
plicable to scale-free real networks or models. The average
degree is 	k
=���−1� /����. The resulting expressions are

NR�m� =
2−m��−1�

m��� − 1�m , �22�

NC�m� =
N

2

2−�m−1���−1�

������� − 1�m , �23�
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FIG. 4. Number of cords �a�, tails �b�, and handles �c� of differ-
ent sizes in the model with Poisson degree distribution. The points
are the averaged measured values �each of the error bars corre-
sponds to one standard deviation�; the lines are the values computed
analytically. Note that the abrupt increase of the width of the error
bars is a consequence of the logarithmic scale.
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NT�m� = N
2−�m−1���−1�

������� − 1�m	 , �24�

NH�m� =
N

2

2−�m−1���−1�

������� − 1�m	2, �25�

where 	= ����−1�−1−2−��−1��2.
Figure 5 shows the comparison of the results for networks

with N=106 vertices and �=2.5. A total of 1000 realizations
of the model were used to compute the averages and standard
deviations. A comparison with Fig. 4 shows that the Poisson
degree distribution with the same average degree presents
larger chains. This is due to the relation between the con-
stants in the exponential dependency on m: 	k
 /e	k
�0.278
for the Poisson model and 21−� /���−1��0.135 for the
scale-free model.

The results presented in this section addressed the issue of
validating the theory for analytical models. In Sec. VI, the
theory is used to evaluate chains in real-world networks.

VI. REAL-WORLD NETWORKS

It is known that networks belonging to the same class may
share similar structural properties �8,16�. So, to study the
presence of handles in networks, we considered five types of
complex networks, namely, social networks, information net-
works, word adjacency networks in books, technological net-
works, and biological networks.

A. Social networks

Social networks are formed by people or groups of people
�firms, teams, economic classes� connected by some type of
interaction, as friendship, business relationship between
companies, collaboration in science, and participation in
movies or sport teams �2�, to cite just a few examples. Below
we describe the social networks considered in our analysis.

Scientific collaboration networks are formed by scientists
who are connected if they have authored a paper together. In
our investigations, we considered the astrophysics collabora-
tion network, the condensed matter collaboration network,
the high-energy theory collaboration network, all collected
by Newman from �38�, and the scientific collaboration of
complex networks researchers, also compiled by Newman
from the bibliographies of two review articles on networks
�by Newman �2� and Boccaletti et al. �17��. The astrophysics
collaboration network is formed by scientists who post pre-
prints on the astrophysics archive, between the years 1995
and 1999 �18�. The condensed matter collaboration network,
on the other hand, is composed by scientist posting preprints
on the condensed matter archive from 1995 until 2005 �18�.
Finally, the high-energy theory collaboration network is
composed by scientists who posted preprints on the high-
energy theory archive from 1995 until 1999 �19,20�.

B. Information networks

Roget’s Thesaurus network is constructed by associating
each vertex of the network to one of the 1022 categories in
the 1879 edition of Peter Mark Roget’s Thesaurus of English
Words and Phrases, edited by John Lewis Roget �21�. Two
categories i and j are linked if Roget gave a reference to j
among the words and phrases of i, or if such two categories
are directly related to each other by their positions in Roget’s
book �21�. This network is available at Pajek data sets �22�.

Wordnet is a semantic network which is often used as a
form of knowledge representation. It is a directed graph con-
sisting of concepts connected by semantic relations. We col-
lected the network from the Pajek data sets �22�.

The world wide web �www� is a network of web pages
belonging to the nd.edu domain linked together by hyper-
links from one page to another �23�. The data considered in
our paper are available at the Center for Complex Network
Research �24�.
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FIG. 5. Number of cords �a�, tails �b�, and handles �c� of differ-
ent sizes in the model with scale-free degree distribution. The points
are the averaged measured values �each of the error bars corre-
sponds to one standard deviation�; the lines are the values computed
analytically.
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C. Word adjacency in books

Word adjacency in books can be represented as a network
of words connected by proximity �25�. A directed edge is
established between two words that are adjacent and its
weight is the number of times the adjacent words appear in
the text. Before constructing a network, the text must be
preprocessed. All stop words �e.g., articles, prepositions,
conjunctions, etc.� are removed, and the remaining words are
lemmatized �25�. In our analysis, we considered the books
David Copperfield by Charles Dickens, Night and Day by
Virginia Woolf, and On the Origin of Species by Charles
Darwin, compiled by Antiqueira et al. �26�.

D. Technological networks

The internet or autonomous systems �AS� network is a
collection of internet protocol �IP� networks and routers un-
der the control of one entity that presents a common routing
policy to the internet. Each AS is a large domain of IP ad-
dresses that usually belongs to one organization such as a
university, a business enterpriser, or an internet service pro-
vider. In this type of network, two vertices are connected
according to Border Gateway Protocol �BGP� tables. The
considered network in our analysis was collected by New-
man in July 2006 �27�.

The U.S. airlines transportation network is formed by
U.S. airports connected by flights in 1997. This network is
available at Pajek data sets �22�.

The western states power grid represents the topology of
the electrical distribution grid �28�. Vertices represent gen-
erators, transformers, and substations, and edges the high-
voltage transmission lines that connect them.

E. Biological networks

Some biological systems can be modeled in terms of net-
works, such as the brain, genetic interaction, and the interac-
tion between proteins.

The neural network of Caenorhabditis elegans is com-
posed of neurons connected according to synapses �28,29�.

The transcriptional regulation network of Escherichia
coli is formed by operons �an operon is a group of contigu-
ous genes that are transcribed into a single mRNA molecule�.
Each edge is directed from an operon that encodes a tran-
scription factor to another operon, which is regulated by that
transcription factor. This kind of network plays an important
role in controlling gene expression �7�.

The protein-protein interaction network of Saccharomyces
cerevisiae is formed by proteins connected according to
identified directed physical interactions �30�.

VII. RESULTS AND DISCUSSION

We analyzed the real-world networks by comparing their
numbers of cords, tails, and handles with random networks
generated by the rewiring procedure as described in �31� and
with the theory proposed in Sec. IV.

A. Comparison between real-world networks and their
randomized counterparts

For each considered real-world network, we generated
1000 randomized versions �100 for WWW� by the rewiring
process described in �31�. The networks generated have the
same degree distribution as the original, but without any
degree-degree correlation. In order to compare the chain sta-
tistics obtained for the real-world and the corresponding ran-
domized versions, we evaluated the Z-score values for each
size of the cords, tails, and handles. The Z score is given by

Z =
Xreal − 	X




, �26�

where Xreal is the number of cords, tails, or handles with a
specific size of the original �real-world� analyzed network,
and 	X
 and 
 are, respectively, the average and the standard
deviation of the corresponding values of its randomized
counterparts. A null value of the Z score indicates that there
is no statistical difference between the number of occur-
rences of cords, tails, or handles in the considered network
and in its randomized versions.

The results of the Z scores for all considered networks can
be seen in Fig. 6. The cases in which the Z-score values are
not defined �
=0� were not considered.

The majority of the results presented in Fig. 6 can be
explained by the fact that the rewiring process tends to make
uniform the distribution of cord, tail, and handle sizes. In this
way, the excess of these structures on real networks will be
reduced in the random counterparts. For instance, if a net-
work has many large handles, its random version will present
few large handles but many small ones. The next discussion
will not take into account the shape of the distribution of
chains, but just the most important results.

In the case of collaboration networks, there is a large
quantity of cords. This fact suggests that researchers pub-
lished papers with just one, two, or three other scientists.
Cords may appear because many researchers can publish in
other areas and, therefore, such papers are not included in the
network. If other research areas had been considered, this
effect would not occur and the number of small cords would
be less significant. Thus, the presence of cords in collabora-
tion networks can be the result of database incompleteness.
Another possible cause of cords in such networks concerns
the situations of authors who publish only among them-
selves.

The information networks do not present such well-
defined patterns as observed in the collaboration network.
The Roget thesaurus network is different from the others, but
the results obtained for this network are not informative
enough to be discussed. It is important to note that in the
Wordnet and WWW, there is a large occurrence of tails of
size 1. In the case of Wordnet, this happen because specific
words have connections with more common words which
have connections with the remainder of the network. In the
case of the WWW, this structure is a consequence of charac-
teristic URL documents which have just one link. In addition
to small tails, the WWW has long tails and handles. This fact
can be associated with the way in which the network were
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constructed, by considering a web crawler �23�—a program
designed to visit URL documents inside a given domain and
get links between them in a recursive fashion. When pages
are visited by the crawler, the wandering path can originate
chains. If the program is not executed for a long time inter-
val, long chains can appear. Thus, this effect can be the result
of incomplete sampling �see Sec. VII C�. In addition, as the
process of network construction is recursive, isolated com-
ponents do not occur in the database and therefore there are
no cords and rings.

The book adjacency network presents a characteristic pat-
tern of chains: no cords, the same quantity of tails of sizes 1,
2, and 3 as observed in the random counterparts, and many
handles of sizes 1, 3, 4, and 5. The increase in the quantity of
handles of size 2 in random versions is a consequence of the
fact that, when the rewiring process is performed, many
handles of size 1 can be put together. This fact explain why
book networks present more handles of size 1 than random
counterparts. On the other hand, the long handles are a con-
sequence of the sequential process considered to obtain the
network.

In technological networks, the chain patterns are more
significant in the power grid. This network presents a high
quantity of tails of size 1 and handles of size 11. While the
first occurrence appears to be related to the geographical ef-
fect, where new vertices needed to cover a new region tend
to connect with near vertices, the second can be the result of

geographical constraints �e.g., the transmitters may be allo-
cated in a strategic way in order to contour a mountain, lake,
or other geographical accident�.

The results obtained for biological networks are not so
informative. However, the protein interaction network of the
yeast S. cerevisiae has many cords of sizes 1 and 2. The
presence of small cords in this network is a consequence of
isolated chains of proteins which interact only with a small
number of other proteins. This fact can be due to incomplete-
ness �32�, where many real connections may not be consid-
ered, or highly specialized proteins, which have lost many
connections because of the mutation process—protein inter-
action networks evolve from two basic processes, duplica-
tion and mutation �33�.

B. Theoretical analysis of real-world networks

Going back to the analysis presented in Sec. IV, we ap-
plied those theoretical developments to the real-world net-
works considered. We obtained their degree-degree correla-
tions and computed the expected number of cords, tails, and
handles as functions of their sizes by using Eqs. �7�–�9�,
respectively. The number of rings was not taken into account
because of their very low probability of appearing in real-
world networks. The results concerning the theoretical analy-
sis are shown in Fig. 7. The cases not shown are those that
have all chains smaller than 2. Due to the low probability of
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finding cords in networks, only three networks are shown
�Fig. 7�a��, namely, cond-mat, high-energy collaborations,
and the Wordnet. The theoretical prediction does not work
well for these networks, except for the Wordnet, predicting
fewer cords than those found in the real networks. An oppo-

site situation was found for the numbers of tails and handles,
shown in Figs. 7�b� and 7�c�, respectively. However, there
are more larger tails and handles in the real-world networks
than predicted by theory, except for the astrophysics, cond-
mat, and high-energy collaboration networks.
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FIG. 7. Distributions shown in �a�, �b�, and �c� correspond to the most significant data �each distribution has at least three points�. Points
correspond to the real data, and the solid lines correspond to the theoretical predictions.
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Despite the fact that, for some cases, the number of small
cords, tails, and handles of the real-world networks were far
from the values obtained from their respective randomized
counterparts �see Fig. 6�, the theoretical results were accurate
for several cases, except for the astrophysics �handles�, net-
science �tails�, cond-mat �cords and handles�, high-energy
�cords, tails, and handles�, WWW �tails and handles�, the
book On the Origin of Species �handles�, and power grid
�handles� networks �see Fig. 7�. The good agreement
between theoretical and experimental results indiciates that
in some networks chains are a consequence of degree
correlations.

C. Analysis of incomplete networks

In order to investigate the possibility that incomplete net-
works presents many tails and handles, we sampled two the-
oretical network models, namely, the Erdős-Rényi �ER� �34�
and the Barabási-Albert �BA� scale-free model �35� by per-
forming random walks �36,37�, and analyzing the corre-
sponding distributions of tails and handles. The ER and BA
models included 100 000 vertices with average degree 6. The
results of the random walks in these theoretical networks are
shown in Fig. 8. Each point of the mesh grid is the average
value considering 1000 realizations.

For the ER and BA models the results are very similar,
with the difference that the tails tend to vanish with larger
random walks �almost 107 steps� in the BA model. This is
not the case for the ER network because its original structure
already had vertices with unit degree. Therefore, this net-
work already had small tails �sizes 1 and 2�. Conversely, BA
networks of average vertex degree 6 do not have tails, and
with large random walks these structures tend to vanish.

The results from Fig. 8 clearly indicate that there are
many large tails and handles for both models when the ran-
dom walks are relatively short. As the size of the random
walks is increased, the number of large tails and handles
tends to decrease, but the number of small tails and handles
increases, because with large random walks the probability
of breaking large tails and handles into smaller parts is in-
creased. As the length of the random walks increases further,
the large tails and handles tend to vanish, and the original
networks are recovered.

VIII. CONCLUSIONS

One of the most important aspects characterizing different
types of complex networks concerns the distribution of spe-
cific connecting patterns, such as the traditionally investi-
gated motifs. In the present work we considered specific con-
necting patterns including chains of articulations, i.e., linear
sequences of interconnected vertices with only two neigh-
bors. This type of motif has been subdivided into cords �i.e.,
chains with free extremities�, rings �i.e., chains with no free
extremities but disconnected from the remainder of the net-
work�, tails �i.e., chains with only one free extremity�, and
handles �i.e., chains with no free extremity�. By considering
a large number of representative theoretical and real-world
networks, we identified that many specific types of such net-
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FIG. 8. �a� and �b� present the number of tails and handles of
different sizes in the Erdős-Rényi model, respectively. �c� and �d�,
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Barabási and Albert scale-free model, respectively. Each point in
the mesh grid is the average obtained by considering 1000 realiza-
tions of each random walk.
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works tend to exhibit specific distributions of cords, tails,
and handles. We provide an algorithm to identify such motifs
in generic networks. Also, we developed an analytical frame-
work to predict the number of chains in random network
models, scale-free network models, and real-world networks,
which provided accurate approximations for several of the
considered networks. Finally, we investigated the presence of
chains by considering Z-score values �i.e., comparing the
presence of chains in real networks and the corresponding
random counterparts�. The specific origins of handles and
tails are likely related to the evolution of each type of net-
work, or incompleteness arising from sampling. In the first
case, the handles and tails in geographical networks may be
a consequence mainly of the chaining effect obtained by con-
necting vertices with are spatially near or adjacent to one
another. In the second, we showed that incomplete sampling
of networks by random walks can produce specific types of
chains.

All in all, the results obtained in our analysis indicate that
handles and tails are present in several important real-world

networks, while being largely absent in the randomized ver-
sions. The study of such motifs is particularly important be-
cause they can provide clues about the way in which each
type of network was grown. Several future investigations are
possible, including the proposal of models for the generation
of networks with specific distributions of handles and tails,
as well as additional experiments aimed at studying the evo-
lution of handles and tails in growing networks such as the
WWW and the internet.
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